INTRODUCTION OF VIRTUALIZATION IN THE TEACHING OF
OPERATING SYSTEMS FOR CS UNDERGRADUATE

PROGRAM'

Kevin Grammer, Jack Stolerman, and Beifang Yi
Computer Science Department
Salem State University
352 Lafayette Street, Salem, MA 01970
(978) 542-7426
kevingrammer@gmail, viper1 l(@gmail, and byi@salemstate.edu

ABSTRACT

For many colleges, virtualization is a low-cost solution for providing hands-on
lab activities for computer science courses. This paper describes the design and
implementation of a series of projects for an undergraduate operating systems
course. By utilizing Linux virtual machines on students’ personal computers,
these projects teach reinforce students’ understanding of operating system
concepts as well as teach students the basics of virtualization. After completing
the projects, students were surveyed about their experience and a summary of
their responses is presented here.

INTRODUCTION

The study of operating system (OS) principles is an integral part of the computer
science undergraduate curriculum. Beyond lectures and reading textbooks, hands-on
activities add significantly to a student’s understanding of computer science topics. The
CS2008 Review Taskforce emphasizes that the study of operating systems should include
a “laboratory component to enable students to experiment with operating systems” [1].
While some major universities are able to provide dedicated computer labs for this
purpose, smaller colleges must use what they have at hand and often cannot provide labs
for every course [4, 6]. The challenge for these colleges is to find other ways to provide
students with high-quality, affordable hands-on experience [2, 3].

" Copyright © 2011 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

44

CCSC: Northeastern Conference

Virtualization offers a lightweight, low-cost, practical solution to this problem. The
student installs a virtual machine on his or her personal computer and it runs on top of the
computer’s host operating system [12]. Separation between the host OS and the virtual
machine allow the students to manipulate these virtual machines without the risk of
damaging the host OS [4, §].

In this paper we will discuss applying virtualization in teaching an undergraduate
OS course with hands-on projects. Projects were designed to introduce students to the
Linux operating system. The main objectives of the projects were to have students update
the Linux kernel, add a system call, and work on process-and thread-related projects in
the Linux environment. We have also included the comments and feedback we received
from the students in this paper.

BACKGROUND

As personal computer speeds and storage space increase rapidly and OS
virtualization becomes more easily accessible and commonly used professionally,
colleges are more seriously considering adopting virtualization in the classroom. Some
schools have already developed virtualization techniques to bring students more
accessibility to lab-based activities for both university students and distance learning
students [7]. Not only does it cut lab costs for colleges that use virtualization as a teaching
tool, but it gives students necessary exposure to the latest real-world technologies. Most
students’ personal computers meet the minimum requirements for running at least one
virtual machine, making it a practical alternative to using university computer labs. Many
universities have already implemented virtualization to give their students hands-on
experience in system-oriented computer science courses such as operating systems,
system administration, and networks courses [4, 5, 7].

OS virtualization allows a CS professor to give his or her students exposure to
different operating systems that they may not have prior experience with. Rather than
simply learning the software of a single OS, using a variety of operating systems
emphasizes the fundamental and lasting concepts of operating systems by revealing the
commonalities in function between them [2, 10]. In addition, virtualization gives the
professor flexibility as to which OS to use to teach each concept. For example, a
professor might use Linux to help students understand the distinction between user and
super-user security levels [7].

At Salem State University, Operating System Principles is a 3-credit hour
undergraduate course. While many CS courses here have separate lecture and lab time,
this course has no accompanying in-class lab hours. From our past experience in teaching
OS, students often complained of the theoretical descriptions of OS topics and algorithms
without lab practice to help solidify an understanding of the internal structure of the OS.
Due to the limited resources in our department (students do not have administration rights
on the machine) and course setting (no in-class lab time), we must find non-traditional
solutions to overcome these challenges— to design OS projects that can be implemented
on students’ personal computers.

45

JCSC 26, 6 (June 2011)

PROJECT GOALS AND PREPARATIONS

We set the goals of designing the OS projects as: (1) introduction to virtualization
— the students will not only learn a new technology but also complete the OS projects
without affecting their personal computer environments; (2) one installation is a Linux
operating system — the students will get experience with different operating systems than
the norm (Windows/Mac) and work with free, open source software (most CS students
here have a very limited knowledge of Linux); (3) patching the kernel with a newer
version — the students will acquire direct knowledge of compilation, configuration, and
construction of Linux; and (4) adding a system call to the new kernel and practicing with
the new kernel through a simple C program — the students will have a chance to look
inside the OS to obtain a basic understanding of internal structure of one operating system
and to reinforce OS principles.

To achieve these goals, we polled the students in an initial survey. Questions from
the survey included inquiries about the students’ experience with computers, their
computer usage (such as which operating systems and programming languages they had
used) and configurations of their personal computers (such as RAM/hard-drive capacity).
From the feedback (of 25 replies at the beginning of 2010 Fall), we noticed the following:

* All the students own one or more computers: all students except one have laptops;
about 40% have both desktop and laptop.

* Only two students (8% of total) have a computer with 1 GB RAM; 20% with 2GB
RAM; 60% with 4GB RAM; 12% with 6 or 8§GB RAM.

* 40% of students did not have any knowledge about Linux; 40% have very limited
experience with Linux.

* 20% of students did not use any command line environment; 40% had limited
experience through the using of Windows’ DOS.

* More than 80% of students used only Windows operating systems.

Previously, we took a similar survey in the Fall of 2009 for the OS class and
received very similar results indicating a little lower percentage in the student population
that had computers with 2GB or more of RAM.

These statistics provided us with guidelines to design OS projects. First, we decided
to use VMware Workstation as the virtualization software package for virtual machines.
Our considerations were (1) compared with other virtualization solutions, VMware is
more reliable, more widely adopted in industry, easier to set up, and provides more
management tools [9] and (2) each student’s personal computer meets the hardware
requirements needed to install VMware. We also encouraged students who had
experience with virtual machines to use alternative virtualization packages such as
VirtualBox.

Next, we made use of the concepts and topics from the course textbook [11] for the
implementation of the projects. Thus, students should be familiar with these topics from
reading the textbook. We focused on the following points in designing the projects: (1)
any student with no background in Linux should still be able to complete them, (2)
students should be given a chance to “see” the inside of Linux and to make some
modifications to it, and (3) some projects which covered the most important concepts of
the OS (such as processes and threading) should be simple enough to be implemented in

46

CCSC: Northeastern Conference

both C and Java programming languages (Java is the first and required programming
language taught at Salem State University. Most students had little to no prior experience
coding in C when taking the OS course).

PROJECT IMPLEMENTATION AND RESULTS
Project 0: Open Source OS and Virtualization

This project begins with a guide to downloading VMWare (or another virtual
machine software) and installing the Ubuntu operating system. The Ubuntu file, although
readily available for free download on the Internet, is also provided on the university
network and distributed on CDs and thumb drives to students in class. Ubuntu is booted
within the virtualization software and from here on, students work within the Ubuntu OS
rather than the host OS.

After a basic introduction to the Ubuntu GUI and some of its preinstalled
applications (Firefox, Open Office, Gimp, etc.), the student is given instructions to use
the command line interface. The student tries some commands, such as cp, mv, and
uname to get some information about the OS. Next the student makes a directory, changes
directories, and lists parent files. Once the student is familiar with some basic commands,
he or she is asked to create a hello.cpp file and enter some lines of code (provided in the
project description). In order to compile and run the code as a C++ program, the student
must first download and install the g++ software package from the command line. As the
student completes each step of Project 0, he or she takes screenshots for submission.

The goal of Project 0 is to give the students some familiarity with the virtual
machine, Linux, and the CLI. The project focuses on how to do a variety of basic
operations with the Linux virtual machine, such as how to install a virtual machine
running Linux, how to navigate Ubuntu’s GUI, and how to get basic functionality from
the CLI. With the completion of Project 0, the student not only has a bit of experience
with Linux and the command line, but also has a “how to” reference for the next project.

Project 1: Updating the Linux Kernel and Adding a System Call

This project is a step-by-step guide to updating the Linux Kernel with a later version
and adding a system call to the kernel. Much of what the student is asked to do in Project
1 is complex and most likely beyond his or her basic understanding of operating systems
at the time when the project is assigned. Project 0 has given them some understanding of
the Linux environment and command line to better follow along.

Initially, the student opens up the CLI and logs in as the root user. From here on, the
student can write to the systemj|s directories and must be careful not to accidentally
change file or directory names. Because the student is doing this on a virtual machine, if
they do make an error, they only run the risk of corrupting the virtual machine, and
cannot directly affect their host operating system. Project 1 then takes the student through
updating the Linux package and downloading the new kernel.

In order to add a system call to the kernel, the student must act as the root user and
edit files within the kernel. Project 1 guides the student through each step of the process,

47

JCSC 26, 6 (June 2011)

editing the appropriate system files and adding a simple system call function to the
kernel. In the case of Salem State University, most OS students have very little
experience coding in C and C++. Project 0 gave students a chance to write and compile
a C/C++ program. Project 1 requires the students to manipulate C files. The student
should gain enough knowledge from Project 0 to successfully manipulate these files and
at the same time become more familiar with the structure of C files.

After adding the system call, the student must configure the kernel using the kernel
configuration menu. The student loads the new configuration and then builds the new
kernel, appending his or her first initial and last name to the kernel version string. The
compiling process takes anywhere from two to five hours. By witnessing the compiling,
students said they gained an appreciation for how massive a task compilation really is.
The student then installs the kernel and tests the newly added system call with a C test
program. Although it is only a simple C program, it re-enforces the basics of C and its
uses in the Linux kernel. Writing a working C program that makes a student-created
system call can be a very powerful tool for convincing Java-based students that at least
a basic understanding of the C programming language is important.

At the conclusion of the project, the student submits screenshots of the process to
the professor. The greatest satisfaction the student gets is seeing his or her name
appended to the kernel version name while getting a good look at the composition of the
kernel of how it functions. The student also gains valuable experience utilizing the CLI
and gains an appreciation for the root user power of the command line.

Project 2 and Project 3: Processes and Multithreading in C/Java

Project 2 builds on the basic C concepts learned from the previous two projects. In
this project, students must create multiple processes that communicate with each other
using pipes. A message is sent from a parent process to a child process. The message is
then modified and sent back to the parent process. Although a rather simple program, it
demonstrates synchronization and the implementation of pipes.

Project 3 is a more in depth look at Java threads. Besides giving students experience
using threads, this project directly contrasts Project 2's use of processes. Threads share
data in a very different way than processes. Project 3 gives students a basic understanding
of threads by designing a Java program using threads that adds and multiplies all the
numbers 1 through N. In addition to this simple threading program, the student is asked
to then write a more complex program multiplying two matrices. A separate thread is
used to multiply each element of the solution matrix. The students are then challenged to
rewrite this program in C by using PThread. A more challenging multithreading project
— modeling of one of the OS classic examples, Producer-Consumer problem — was
given as a bonus project.

CONCLUSIONS AND FUTURE WORK

Students showed great interest in these projects, particularly those involving practice
with virtual machines and Linux -- updating the Linux kernel and the addition and testing
of new system calls. In addition to everyone completing the first two projects, many

48

CCSC: Northeastern Conference

students provided positive feedback. In order to better design for future projects, we gave
another survey to the students after they completed the above projects. We invited
students to critique their learning experiences and we asked for suggestions to help with
future modifications of the projects. The following gives a brief summary of the survey.

Virtualization and virtual machines: more than 80% of students replied that the
projects greatly helped them understand the related subjects and use the latest
technology. About 85% of students used VMware for the projects, while others used
different virtualization software packages with success.

Linux and open source software: more than 80% of students considered that the
projects provided a good opportunity for them to learn Linux and to make use of
open source software. More than half of them said that without the projects they
would not have even considered using Linux.

C programming language: half of the students acknowledged that the projects
increased their knowledge of the C programming language.

OS kernel and system call: more than 85% of students responded that the projects
helped them not only understand the OS internal structures “in a very elementary
way”’ but also learn the basics of system programming. Many of them recognized
that without the projects they could not fully understand the kernel functions of the
operating system.

Additional comments: we also asked students to provide feedback on other aspects
of the projects. Many of them recognized the “complexity” of the operating system
(it takes about “3-4 hours to compile” — quoted from a survey) and the superior
functionality of the Linux command-line to the GUI. They particularly mentioned
the thread/process-related projects, which greatly reinforced their understanding of
the concepts of process and threading.

Students not only favorably responded to the survey questions but also provided

many suggestions that we will benefit from in future versions of these projects. We will
continue to use the projects but will spend a bit more time teaching the basics of Linux
before assigning the Linux related projects. We will first ask students to do some
investigation on the topic of virtualization and adopt different virtualization solutions. We
will design more projects in other areas of OS such as multithreading program but
continue to have each project build off the knowledge gained from previous projects.

REFERENCES

[1]

[2]

[3]

ACM and IEEE Computer Society, Computer Science Curriculum 2008: An
Interim Revision of CS 2001,
http://www.acm.org//education/curricula/ComputerScience2008.pdf, 2008.

Bergman, M., Low-cost compute clusters in virtualized lab environments,
Journal Computing Sciences in Colleges, 25 (1), 159-166, 2009.

Bower, T., Experiences with virtualization technology in education, Journal
Computing Sciences in Colleges, 25 (5), 311-318, 2010.

49

JCSC 26, 6 (June 2011)

[4 Brylow, D., An experimental laboratory environment for teaching embedded
operating system, Proceedings of the 39" SIGCSE technical symposium on
Computer Science education, 192-196, 2008.

[5] Eastman, E. G. Exploring Linux as an operating system in the CS curriculum,
Journal Computing Sciences in Colleges, 21 (4), 83-89, 2006.

[6] Gaspar, A.,Langevin, S., Armintage, W. D., Rideout, M., Enabling new
pedagogies in operating systems and networking courses with state of the art
Open Source kernel and virtualization technologies, Journal Computing Sciences
in Colleges, 23 (5), 189-198, 2008.

[7] Hickman, G. D., An overview of virtual machine (VM) technology and its
implementation in .T. student labs at Utah Valley State College, Journal
Computing Sciences in Colleges, 23 (6), 203-212, 2008.

[8] Laadan, O., Nieh, J., Operating system virtualization: practice and experience,,
Proceedings of the 3" Annual Haifa Experimental Systems Conference (SYSTOR,
10), 2010.

[9] Li, P., Selecting and using virtualization solutions--our experiences with
VMWare and VirtualBox, Journal Computing Sciences in Colleges, 25 (3),
11-17, 2010.

[10] Shade, E., Operating Systems on a Stick, Journal Computing Sciences in
Colleges, 24 (5), 151-158, 2009.

[11] Silberschatz, A., Galvin P. B., Gagne G., Operating System Concepts, 8" ed.
John Wiley & Sons. Inc, 2009.

[12] Stackpole, B., The evolution of a virtualized baboratory environment,
Proceedings of the 2008 ACM Conference on Information Technology Education
(SIGITE;|08), 243-247, 2008.

ACKNOWLEDGEMENT

The authors of this paper would like to thank Professor Joseph Kasprzyk,
chairperson of the Computer Science Department of Salem State University, for his
support and guidance in the writing of the paper. The corresponding author of the paper
is Beifang Yi (byi@salemstate.edu).

50

