
SSU 2
nd

 Programming Contest

 1

1. Counting in a sequence? Write a Java program that calculates the number of special numbers

whose squares are in a sequence of integers from m through n inclusive. A number’s square is an

integer that is the square of an integer. In other words, it is the product of some integer with itself.

For example, 16 is such a special number, since it can be written as 4 x 4. You may assume that m

and n are positive integers and that n is greater than or equal to m.

Input: the first line gives an integer k which is the number of test cases and is followed by k

lines of inputs, each of which consists of two integers for a test case, m and n (separated with a

whitespace).

 Example:

4

1 4

1 100

10 100

45 45678

Output: k lines of output, each of which is a single integer (for a test case) as the number of

special numbers for the input in the test case defined above.

 Example (the output for the above inputs):

2

10

1

169

Hints:

 For an int number, n, the product, n x n, might overflow.

 You may need to use Java method “static double Math.sqrt(double a)”

SSU 2
nd

 Programming Contest

 2

2. Sum of a numeric sequence. Write a Java program that calculates the sum of all the even or odd

sequence numbers from m through n. The selection of even or odd numbers is controlled by a flag,

f. If f = 1, the odd numbers will be added; if f = -1, the even numbers will be added. You may

assume that n is greater than or equal to m. You may also assume that the sum can be represented

with Java’s int variable.

Input: the first line gives an integer k which is the number of test cases and is followed by k

lines of inputs, each of which consist of three integers for a test case f, m and n (separated with

whitespaces).

 Example:

7

1 1 5

1 1 999

1 -3 -1

-1 1 4

1 1 1

1 2 2

-1 2 4

Output: k lines of output, each of which is a single integer (for a test case) as the sum for the

test case defined above.

 Example (the output for the above inputs):

9

250000

-4

6

1

0

6

SSU 2
nd

 Programming Contest

 3

3. Vigenere Cipher. Long before the Internet years, encryption algorithms were invented for

communication. One is called the Caesar cipher, in which each letter of the alphabet is shifted

along some number of places; for example, in a Caesar cipher of shift 3, “A” would become “D”,

“B” would become “E”, “Y” would become “B” (wrap around), and so on.

The Vigenere cipher consists of several Caesar ciphers in sequence with different shift values. The

following gives an example on how Vigenere cipher works:

1. Suppose that the plaintext to be encrypted is: ATTACKATDAWN.

2. Choose a keyword (for example, “LEMON”) and repeats it until it matches the length of

the plaintext, LEMONLEMONLE.

3. Each letter in the plaintext is shifted according to the corresponding letter in the keyword.

Thus,

a. The first letter “A” is shifted according to “L” (not encoded to “L”);

b. The second letter “T” is shifted according to “E”,

c. The third letter “T” is shifted according to “M”, and so on.

4. The shifting itself works as follows (with the use of Caesar cipher):

a. If we shift according to, say, “L” (a keyword letter), then: “A” becomes “L”, “B”

becomes “M”, “C” becomes “N”, and so on. If we reach the end of the alphabet,

then we wrap around to the beginning. So “O” becomes “Z”, and “P” becomes “A”.

b. If the keyword letter is “E”, then each letter is shifted by 4 (the distance between

“A” and “E”, i.e., “A” would become “E”) so “T” becomes “X” and so on.

5. The plaintext above is thus encrypted to ciphertext: LXFOPVEFRNHR .

6. (You may use the examples below to help your understanding of the algorithm.)

Now you are to write a Java program to encrypt messages using the Vigenere technique.

Input: the first line gives an integer k which is the number of test cases and is followed by k

lines of inputs, each of which consists of 2 strings (in upper case) separated with a white-

space: the first string is the keyword and the second one is the plaintext.

 Example:

5

AB ABCDE

BBC ABCXYZ

AB BEIFANG

SSU SALEMSTATE

LEMON ATTACKATDAWN

Output: k lines of output, each of which is a string (in upper case) for a ciphertext.

 Example (the output for the above inputs):

ACCEE

BCEYZB

BFIGAOG

KSFWEMLSNW

LXFOPVEFRNHR

Hints: You may use Scanner’s next() method to read the next string.

SSU 2
nd

 Programming Contest

 4

4. Rectangular Map. You are a commuter student and go to school by buses and trains. All the

stations are marked on a rectangular map with their coordinates. This is a problem for you to

solve: compute the total number of stations in the smallest rectangle that contains your trip.

You are given the locations (as (x, y) coordinates, x and y are integers.) for all stations in the public

transit system on the map and the list of stations (in order) that your line/trip takes you through, in

order to solve this problem.

Input: the first line gives an integer k which is the number of test cases and is followed by k

data sets for the test cases. Each data set is defined in the following format:

a. The first line contains two integers, n (the total number of stations in the system) and

m (the number of stations you travel through). You may assume that 2 <= n <= 500

and 2 <= m <= n.

b. The next n lines give n pairs of integers, xi and yi, the coordinates for the i
th
 station (i

is a positive number).

c. The following line contains m integers for the list of stations you visit in order.

 Example:

1

8 4

0 0

6 3

0 2

7 2

0 -1

4 4

1 4

3 5

1 7 6 2

Output: k lines of output, each of which is a single integer, the total number of stations visible

in the smallest rectangle containing your entire trip.

 Example (the output for the above inputs):

5

SSU 2
nd

 Programming Contest

 5

5. Searching for new living things or new materials in the universe (Part I). Scientists have been

using telescopes in the search for possible new materials and new living things in the universe.

The photos taken with a telescope consist of pixels and the “values” of the pixels reflect the

features/properties of the cosmological bodies or materials on such bodies. In this problem, we use

upper-case letters (‘A’ to ‘Z’) to represent pixel values (instead of integers for color intensities in a

picture). Each picture is a rectangle of h x w pixels, with 1<= h <= 50 and 1<= w <= 50. Given a

set of special pixel values which indicate a clue for new materials, we are to find the maximum

number of such special pixels in a certain area on a picture. That certain area is defined as a square

with side, m, such that 1 <= m <= min(h, w)) and can be in any place within the picture. Write a

Java program to solve this problem.

Input: the first line gives an integer k which is the number of test cases (i.e., the number of

pictures) and is followed by k data sets for the test cases. Each data set is defined in the

following format:

1. The first line contains three integers for h (the image height), w (the image width),

and m (the square side), which are separated with white spaces.

2. Next comes a line of a string of 1-26 letters from ‘A’-‘Z’ for the special

(indicative) pixel values, with no repetitions (but not necessarily sorted).

3. This line is followed by h lines, each consisting of w upper-case letters, each

describing one row of the image.

 Example (inputs; the comment texts

marked with “//…” are not the input

parts, only for the explanation):

3 // number of test cases

3 4 2 // h, w, m

AC // special indicator values

ABCD // first row

ABDE // second row

CDEF // third row

3 4 1

AC

ABCD

ABDE

CDEF

3 4 3

AC

ABCD

ABDE

CDEF

Output: k lines of output, each being a single

integer for the solution for a test case.

 Example (the output for the above

inputs):

2

1

4

Hints:

1) You may imagine that the square is just a

sliding window and you are sliding that

window over (within) the picture. Each time

the window covers different areas. You are to

calculate the number of special pixels in

these areas. Select the maximum as your

solution.

SSU 2
nd

 Programming Contest

 6

6. Searching for new living things or new materials in the universe (Part II). Scientists have been

using telescopes in the search for possible new materials and new living things in the universe.

The photos taken with a telescope consist of pixels and the “values” of the pixels reflect the

features/properties of the cosmological bodies or materials on such bodies. In this problem, we use

upper-case letters (‘A’ to ‘Z’) to represent pixel values (instead of integers for color intensities in a

picture). Each picture is a rectangle of h x w pixels, with 1<= h <= 50 and 1<= w <= 50. Given a

set of special pixel values which indicate a clue for new materials, we are to find the largest

density of special letters in any subrectangle of size at least m x m (the density is defined as the

number of special pixels divided by the area of the subrectangle, i.e., its total number of pixels).

You may assume that 1 <= m <= min(h, w).

Input: the first line gives an integer k which is the number of test cases (i.e., the number of

pictures) and is followed by k data sets for the test cases. Each data set is defined in the

following format:

1. The first line contains three integers for h (the image height), w (the image width),

and m (the square side), which are separated with white spaces.

2. Next comes a line of a string of 1-26 letters from ‘A’-‘Z’ for the special,

indicative, pixels, with no repetitions (but not necessarily sorted).

3. This line is followed by h lines, each consisting of w upper-case letters, each

describing one row of the image.

 Example (inputs):

3

3 4 2

AC

ABCD

ABDE

CDEF

3 4 1

AC

ABCD

ABDE

CDEF

3 4 3

AC

ABCD

ABDE

CDEF

Output: k lines of output, each being

the maximum density in any m x m or

large rectangle. This should be output

as a fraction x / y, where x is the

number of special pixels, and y is the

number of total pixels in the

maximizing rectangle. If there are

multiple rectangles of different sizes

giving the same ratio, then output the

ration with the largest number y of

pixels in the rectangle.

 Example (the output for the

above inputs):

3/6

3/3

4/9

