
Chapter 12 Review 1

Review Guide: Chapter 12

Definitions: How are the following terms defined?
• alphabet, string over an alphabet, formal language over an alphabet (p. 781)
• Σn, Σ∗ (the Kleene closure of Σ), and Σ+ (the positive closure of Σ), where Σ is an alphabet

(p. 781)
• concatenation of x and y, where x and y are strings (p. 783)
• concatenation of L and L′, where L and L′ are languages (p. 783)
• union of L and L′, where L and L′ are languages (p. 783)
• Kleene closure of L , where L is a language (p. 783)
• regular expression over an alphabet (p. 783)
• language defined by a regular expression (p. 784)
• character class (p. 787)
• finite-state automaton, next-state function (p. 793)
• language accepted by a finite-state automaton (p. 795)
• eventual-state function for a finite-state automaton (p. 797)
• regular language (p. 804)
• ∗-equivalence of states in a finite-state automaton (p. 809)
• k-equivalence of states in a finite-state automaton (p. 810)
• quotient automaton (p. 814)
• equivalent automata (p. 816)

Regular Expressions
• What is the order of precedence for the operations in a regular expression? (p. 784)
• How do you find the language defined by a regular expression? (p. 785)
• Given a language, how do you find a regular expression that defines the language? (p. 786)
• What are some practical uses of regular expressions? (pp. 787-789)

Finite-State Automata
• How do you construct an annotated next-state table for a finite-state automaton given the

transition diagram for the automaton? (p. 794)
• How do you construct a transition diagram for a finite-state automaton given its next-state

table? (pp. 794-795)
• How do you find the state to which a finite-state automaton goes if the characters of a string

are input to it? (p. 796)
• How do you find the language accepted by a finite-state automaton? (p. 796)
• Given a simple formal language, how do you construct a finite-state automaton to accept the

language? (p. 798)
• How can you use software to simulate the action of a finite-state automaton? (pp. 799-801)
• What do the two parts of Kleene’s theorem say about the relation between the language

accepted by a finite-state automaton and the language defined by a regular expression? (pp.
799. 803)

• How can the pigeonhole principle be used to show that a language is not regular? (p. 804)
• How do you find the k-equivalence classes for a finite-state automaton? (p. 811)
• How do you find the ∗-equivalence classes for a finite-state automaton? (p. 812)
• How do you construct the quotient automaton for a finite-state automaton? (pp. 814-815)
• What is the relation between the language accepted by a finite-state automaton and the lan-

guage accepted by the corresponding quotient automaton? (p. 814)


