
CSC 260-01/Spring 2011 Instructor: Beifang Yi

 1

Programming Challenge 3

(Full Score: 1 point)

(Due by 2/11/2011/Friday Midnight at Moodle)

Your name: Score:

Create a framework for the experimental testing of the Java code performance by drawing a

simple graph in analyzing the time complexity of the algorithm (i.e., draw a graph of Big-O

function).

Requirements:

1. Create a Java class that has two methods:

a. An int findMax(int[] arr) method that searches the array arr of type int for the

largest value and returns the index of the first largest element in this array.

b. A main() method to test the performance of the findMax(int[] arr) method.

2. Test method findMax(int[] arr) with different input array sizes, which will be

provided by the user prompted for the input (suggested sizes would be 10, 100, 500,

1000, 5000, 10000, 50000, 100000, … and 88888888. You may modify these

values or add new ones based on the actual running times of your program).---The

user will be prompted for this input (the size).

3. Use the Java API class java.util.Random. This class has a method nextInt(n) that

returns “a pseudorandom, uniformly distributed int value between 0 (inclusive)

and” n (exclusive), e.g. each call to nextInt(5) returns values one of the following

randomly selected values: 0, 1, 2, 3, 4. Use the calls to the nextInt(n) method in a

loop to initialize all your test arrays with pseudorandom integers. To make sure that

these integers have both positive and negative values and are uniformly distributed,

before assigning a value to the array element subtract n/2 from the nextInt(n)

output. The value of n can be any positive integer.

4. Use the Java API static method System.nanoTime() to record the execution time of

the method findMax(int[] arr) invocation (this time duration does not cover the

input and output executions).

5. Your program must output/record: (1). The size of the array (i.e., the number of

randomly generated numbers), (2). The running time.

CSC 260-01/Spring 2011 Instructor: Beifang Yi

 2

6. The user will be prompted for next run and next array size and your program will

record the outputs.

7. Perform the Big-O analysis: Have your program run at least 25 times with well-

chosen n values and based on the outputs, your program will draw a simple graph

that represent the time complexity that should reflect the Big-O function (i.e.,

O(n))—VERY IMPORTANT, you need to explain why the graph looks not like a

straight line!

Hints:

1. To measure how long some code takes to execute, use the algorithm below:

long startTime = System.nanoTime();

// the code being tested

long endTime = System.nanoTime() – startTime;

2. The method nextInt(int n) returns a pseudorandom, uniformly distributed int value

between 0 (inclusive) and the specified value of n (exclusive), drawn from this

random number generator's sequence. Every time when you create a new int array

for testing, use a loop to initialize the array elements with the pseudorandom values

returned by consecutive calls to the nextInt() method.

3. Use Java coding guidelines when naming your identifiers and creating class fields.

The fields should be private or protected and appropriate accessor and mutator

methods should be provided.

4. Use NetBeans to create a new project, a new class that implements the lab

assignment and to compile, run, test, and debug (if necessary) your code.

5. Save your work regularly, especially at the end of each class.

6. Keep a detailed record of all steps performed.

 (Having successfully completed this project will automatically change your Assignment#3

grade to 40 points whether you have or have not completed Assignment#3 in addition to

this 1 point for your Challenge Project Grade!).

 No late submission will be accepted.

 Your grade for this project will be 0 or 1—you will not receive any partial credit

for incomplete work.

CSC 260-01/Spring 2011 Instructor: Beifang Yi

 3

 Do NOT submit whole package of your project; only Java source files (with

packages if applicable) are required:

o You must name your Java file(s) carefully so I will use only the

following commands in a command-line to test your code:

o “javac *.java”

o “java Challenge3”

o Thus, if you use some IDE, you need to do extra work to test your

project in command-line.

 (Refer to Chapter 3 and its source code for the concept of postfix and infix….)

