
CSC 260-01/Spring 2011 Instructor: Beifang Yi

 1

Assignment 16
(Full Score: 80 points)

(Due in class on 5/3/Tuesday at Moodle)

Your name: Score:

Sets and Maps

Create a program that reads a text file, counts the occurrences of all words in the file,
and outputs these words with corresponding occurrence counts in alphabetical order in
another text file:

1. Create a Java class that has the methods for:

Requirements:

a. Reading a text file.
b. Storing all the words from this file and their occurrence frequencies.
c. Displaying in alphabetical order the words found along with the computed

occurrence counts.
2. Your code must have a main() method to test the calculations.
3. Use the Java Collections API class java.util.TreeMap<K, V> to store, access, and

display the words and their occurrence counts.

1. As the basis for your code, you may use the source file
chapter13\CheapestFlight.java for opening and reading text files and
chapter13\MapTest.java for Map operations. Keep in mind that the code in the
source file chapter13\CheapestFlight.java has a bug – the file is never closed.

Hints:

2. To split a Java String into words, use one of the following Java classes:
java.util.StringTokenizer or java.util.Scanner.

3. Make sure that you properly select the keys and the values for the Java Collections
API java.util.Map<K, V> interface and that you use all appropriate methods and
fields from the java.util.TreeMap<K, V> class to simplify your code.

CSC 260-01/Spring 2011 Instructor: Beifang Yi

 2

Bonus task
Modify your code design to allow the word sorting based on an arbitrary sorting order
defined by an instance of a class that implements the java.util.Comparator<T>
interface. Design this code to enter and display the words in the English text in the
reversed alphabetical order – from Z to A.

 (can add up to 20% to the assignment grade):

Submissions (one submission for one team):

1. Compressed project folder including javadoc file(s).
2. (Your code must follow Java Code/Javadoc Convention (20% of the credits.))

More Hints:

• Test your code with the attached input data file “bible1words.txt”;
• Check your output (should be in a file) against the attached output file “output1.txt”

More BONUS:

1. (30 points) Change your code so it reads and processes the attached input file
“bible1.txt” and the output should be the same (i.e., as “output1.txt”).

a. The (values) lowercase letters are “greater” than uppercases, thus in
alphabetical order, uppercases are ahead of lowercases.

2. (20 points) Modify your code such that it will output the frequency (the number of
times it occurs in the file) of each word in the input file (check against
“output2.txt”):

a. Words with larger frequencies should display first.
b. If more than one words have the same frequency, display them in

alphabetical order.

	3. Make sure that you properly select the keys and the values for the Java Collections API java.util.Map<K, V> interface and that you use all appropriate methods and fields from the java.util.TreeMap<K, V> class to simplify your code.

