
CSC 260-01/Spring 2011 Instructor: Beifang Yi

 1

Assignment 7
(Full Score: 80 points)

(Due by 3/4/Friday-Midnight at Moodle)

Your name: Score:

Java Generics and javadoc

Create and test Java code that implements standard Java java.lang.Comparable<T> and

java.util.Comparator<T> interfaces using Java generics.

1. Create a class Student that has the following 3 fields: name, age, studentId. The
Student class must implement the java.lang.Comparable<Student> interface based
on the studentId field and follow the standard OOP design rules:

Requirements:

a. All data fields are private.
b. The class has two constructors - a default one and a 3-argument one.
c. All data fields have associated public accessor and mutator methods.
d. The class has a toString() method that returns a human readable presentation

of the class attributes (data fields).
e. The compareTo(Student o) method of the Student class should delegate the

comparison processing to the standard String class compareTo(String o)
method based on the studentId field.

2. Code a separate class StudentCompare that implements the

java.util.Comparator<Student> interface for the objects of type Student using the
age field as the comparison criterion. The compare(Student o1, Student o2) method
of the StudentCompare class performs comparisons using the age fields of the o1
and o2 instances of the Student class.

3. Provide a separate test class that:

a. Creates and populates an array of type Comparable<Student> with at least
5 different Student instances.

b. Performs sorting of this array using both of the comparison techniques
implemented according to the items 1 and 2 above.

c. Displays both sorted arrays using the toString() method of the Student class.

4. Use the test results from the item 3 above, to formulate in the assignment report
your conclusions regarding the two comparison approaches described.

CSC 260-01/Spring 2011 Instructor: Beifang Yi

 2

5. Your code should include javadoc comments for all classes, methods, and data
fields.

6. The project submission should include the HTML documentation for your code

generated by the javadoc utility.

1. Use Java 6 API specification
Hints:

http://download.oracle.com/javase/6/docs/api/ for
the information on Java 6.

2. The javadoc utility may be invoked from the command-line or inside NetBeans.

3. Use the appropriate sorting methods from the Java java.util.Arrays class to sort

your array.

4. Use Java coding guidelines when naming your identifiers and creating class fields.

The fields should be private or protected and appropriate accessor and mutator
methods should be provided.

5. Save your work regularly, especially at the end of each class. Keep a detailed

record of all steps performed.

Submission:
Submit your project including the HTML documents produced through javadoc in a
compressed file to Moodle by 3/4/Friday-Midnight!

*************************Important************************
Your code must follow Java Coding Convention; otherwise, 20 points will be deducted
from your total scores.
**

http://download.oracle.com/javase/6/docs/api/�

