
CSC 260-01/Spring 2011 Instructor: Beifang Yi

 1

Assignment 3

(Full Score: 40 points)

(Due by 2/11/2011/Friday Midnight at Moodle)

Your name: Score:

Create a framework for the experimental testing of the Java code performance.

Requirements:

1. Create a Java class that has two methods:

a. An int findMax(int[] arr) method that searches the array arr of type int for the

largest value and returns the index of the first largest element in this array.

b. A main() method to test the performance of the findMax(int[] arr) method.

2. Test method findMax(int[] arr) with different input array sizes, which will be

provided by the user prompted for the input (suggested sizes would be 10, 100, 500,

1000, 5000, 10000, 50000, 100000, … and 88888888. You may modify these

values or add new ones based on the actual running times of your program).

3. Use the Java API class java.util.Random. This class has a method nextInt(n) that

returns “a pseudorandom, uniformly distributed int value between 0 (inclusive)

and” n (exclusive), e.g. each call to nextInt(5) returns values one of the following

randomly selected values: 0, 1, 2, 3, 4. Use the calls to the nextInt(n) method in a

loop to initialize all your test arrays with pseudorandom integers. To make sure that

these integers have both positive and negative values and are uniformly distributed,

before assigning a value to the array element subtract n/2 from the nextInt(n)

output. The value of n can be any positive integer – the suggested value is

10000000.

4. Use the Java API static method System.nanoTime() to record the execution time of

the method findMax(int[] arr) invocation (this time duration does not cover the

input and output executions)

5. Your program must output: (1). The size of the array (i.e., the number of randomly

generated numbers), (2). The running time in finding the maximum number, and

(3). The result (in double) of time divided by the array size.

6. Perform the Big-O analysis: Use the experimental results from the item 5 above

(you must make at least 15 runs for different array sizes and record the results,

CSC 260-01/Spring 2011 Instructor: Beifang Yi

 2

preferably in a table), to formulate in the assignment report in a Word/PDF file your

conclusions on whether the performance of the code tested is consistent with the

theoretical Big-O analysis and explain why.

Hints:

1. To measure how long some code takes to execute, use the algorithm below:

long startTime = System.nanoTime();

// the code being tested

long endTime = System.nanoTime() – startTime;

2. The method nextInt(int n) returns a pseudorandom, uniformly distributed int value

between 0 (inclusive) and the specified value of n (exclusive), drawn from this

random number generator's sequence. Every time when you create a new int array

for testing, use a loop to initialize the array elements with the pseudorandom values

returned by consecutive calls to the nextInt() method.

3. Use Java coding guidelines when naming your identifiers and creating class fields.

The fields should be private or protected and appropriate accessor and mutator

methods should be provided.

4. Use NetBeans to create a new project, a new class that implements the lab

assignment and to compile, run, test, and debug (if necessary) your code.

5. Save your work regularly, especially at the end of each class.

6. Keep a detailed record of all steps performed.

Submission:

Submit your project source code and the Word/PDF file (results and analysis of the

algorithm in big-O) in a compressed file to Moodle by 2/11/Friday-Midnight!

