
CSC280-01/Fall 2009 Project 5 Instructor: Beifang Yi

 1

Project 5—Implementation of Banker’s Algorithm in Dealing with Deadlocks

(Due date: 12/11/2009/Friday)

Your name: Date:

In Chapter 7 (Deadlocks), we described the Banker’s algorithm as one of the methods used for

deadlock avoidance. In this project, we will write a Java program that implements the banker’s

algorithm: customers request and release resources from the bank and the banker will grant a

request only if it leaves the system in a safe state. A request is denied if it leaves the system in an

unsafe state.

 The bank will employ the strategy outlined in the textbook whereby it will consider

requests from n customers for m resources. The bank will keep track of the resources

using the following data structures:

o int [] available; //the available amount of each resource

o int [] [] maximum; //the maximum demand of each customer

o int [][] allocation; //the amount currently allocated to each customer

o int [][] need; //the remaining needs of each customer

 The functionality of the bank appears in the interface defined in “Bank.java” file.

o The implementation of this interface (in a Java file called “BankImpl.java”,

which you are required to complete) will require adding a constructor that is

passed the number of resources initially available. For example,

 Suppose we have three resource types with 10, 5, and 7 resource

instances initially available. In this case, we can create an

implementation of the interface using the following technique:

 Bank theBank = new BankImpl(10, 5, 7);

o The bank will grant a request if the request satisfies the safety algorithm outlined

in the textbook; if granting the request does not leave the system in a safe state,

the request is denied.

 Testing your implementation:

o There is a test input data file called “infile.txt” that contains the maximum

demand for each customer. The file appears as follows:

7,5,3

3,2,2

9,0,2

2,2,2

4,3,3

 This means the maximum demand for customer0 is 7, 5, 3; for

customer1, 3, 2, 2; and so forth.

 Since each line of the input file represents a separate customer, the

addCustomer() method is to be invoked as each line is read in,

initializing the value of maximum for each customer:

o maximum[0][] is initialized to 7, 5, 3,

o maximum[1][] is initialized to 3, 2, 2,

CSC280-01/Fall 2009 Project 5 Instructor: Beifang Yi

 2

o … …

o Furthermore, Test.java also requires the initial number of resources available in

the bank. For example, if there are initially 10, 5, and 7 resources available, we

invoke Test.java as follows:

 java Test infile.txt 10 5 7

o The following shows the process on how to run this process, provide inputs and

read the outputs from the program:

CSC280-01/Fall 2009 Project 5 Instructor: Beifang Yi

 3

o After you typed “java Test infile.txt 10 5 7” with an Enter key, you may:

 Type “*” key for the program to show the current state information;

 Provide Request with “RQ customer# r1 r2 r3”

 For example: “RQ 0 2 1 3” means “customer0 requests resources

2 1 3”.

 Release resources with “RL customer# r1 r2 r3”

 For example, “RL 2 3 0 2” means “customer2 releases resources

3 0 2”

 At anytime, you can type “*” to display the current state of the system.

What you need to do in this project:

1. Download the accompanied zipped file and expand it and you will find the following

files:

a. “Bank.java”—the interface that you will implement upon

b. “infile.txt”—input data file that gives the maximum demand for each customer

c. “Test.java”—used for testing your implementation

d. “BankImpl.java”—the only java program that you will need to complete. This

program is supposed to implement the interface “Bank.java”. At this time, only a

skeleton is provided and it is your job to complete and test it.

2. Complete the “BankImpl.java” based on the “Bank.java” interface and the data

structures mentioned above (available, maximum, allocation, and need arrays at the

beginning).

3. You will definitely use “Test.java” to test your implementation:

a. Read this program thoroughly. You will get some ideas on how to implement

“BankImpl.java.”

b. Don’t change to code.

4. You must use Test.java to test you program by using:

java Test infile.txt 10 5 7

5. Provide some requests and releases to the program and record the results by taking a

screenshot (use the sample output shown in the previous page).

6. You must use Bank.java, Test.java, infile.txt without changing their contents for this

project.

CSC280-01/Fall 2009 Project 5 Instructor: Beifang Yi

 4

7. You must do necessary boundary checks when requesting and releasing resources as

shown in the second screenshot above.

8. In addition to completing BankImpl.java, a readme file (PDF or Doc or DOCX format)

is required for your submission. Check the following on how to submit your project.

a. In the sample code, the “thread” name, in fact, means a “customer”. To use

“thread”, this sample code can be readily modified to a multithreaded program

which is NOT required in this project. Synchronized method is NOT required.

9. At least two screenshots are required in your readme file to show a comprehensive

input/output procedure including boundary checks.

===================How To Submit—Read Carefully, Pease!!============

1. Create a directory “project5_YourLastName” (you must use this format for the

directory name for this project; Use Your Last Name.

2. Copy ONLY java files (source) files to this directory. These files should be clean and

comprehensive—that is, I will javac *.java and I can test your code.

 If you have used some IDEs to develop this project, you need to test your

code in CLI by issuing commands such as “javac *.java” and “java

Test infile.txt 10 5 7 ”…And then copy these source java files!!!!

3. A “readme” file is required for the project write-up that briefly describe how your

program runs, including result screenshots , … keep this readme simple!

a. This “readme” must reside in the “project5_YourLastName” dir in the format

of .pdf, or .doc/docx.

4. Compress the “project5_YourLastName” directory and its contents into a zipped/rar-ed

file with same name.

5. Submit the compressed file to the instructor by email.

6. Double check your work before submission. Significant penalty (10—100 points) will

be applied if your submission does not follow the above instruction!

7. There are tons of examples and source code regarding the implementation of Banker’s

algorithm. You may use them only for your reference and your implementations should

follow the requirements listed above. If you use these references, you must provide

the link and/or source where you have obtained them.

8. This project is an individual project—your implementation should be 100% your own

work. The instructor may ask you questions as to your submission to verify this.

