
CSC280/Fall 2009 Instructor: Beifang Yi

 1

Assignment 4

(Due date: Thursday, 11/5/2009, in class)

Your name: Date:

Provide brief answers to the following Chapter Exercises questions:

6.3 (no submission—check solutions from the course website) Explain why Solaris,

Windows XP, and Linux implement multiple locking mechanisms. Describe the

circumstances under which they use spinlocks, mutexes, semaphores, and condition

variables. In each case, explain why the mechanism is needed.

6.8 Race conditions are possible in many computer systems. Consider a banking system

with the following two functions: deposit(amount) and withdraw(amount). These two

functions are passed the amount that is to be deposited or withdrawn from a bank

account. Assume a shared bank account exists between a husband and wife and

concurrently the husband calls the withdraw() function and the wife calls deposit().
Describe how a race condition is possible and what might be done to prevent the race

condition from occurring.

6.11 What is the meaning of the term busy waiting? What other kinds of waiting are

there in an operating system? Can busy waiting be avoided altogether? Explain your

answer.

6.14 Explain why interrupts are not appropriate for implementing synchronization

primitives in multiprocessor systems.

6.16 (no submission) Describe how the algorithm presented in Figure 6.8 (on page 233

of the textbook, or slide 6.17 of lecture slides) satisfy 3 requirements: (1) mutual

exclusion, (2) progress, and (3) bounded waiting. Describe how the Swap() instruction

can be used to provide mutual exclusion that satisfies the bounded-waiting requirement.

(This question will appear in our final exam).

6.17 Servers can be designed to limit the number of open connections. For example, a

server may wish to have only N socket connections at any point in time. As soon as N

connections are made, the server will not accept another incoming connection until an

existing connection is released.

Explain how semaphores can be used by a server to limit the number of concurrent

connections.

CSC280/Fall 2009 Instructor: Beifang Yi

 2

6.18 Show that, if the wait() and signal() semaphore operations are not executed

atomically, then mutual exclusion may be violated.

6.23 Write a bounded-buffer monitor in which the buffers (portions) are embedded within

the monitor itself.

6.29 A file is to be shared among different processes, each of which has a unique number.

The file can be accessed simultaneously by several processes, subject to the following

constraint: The sum of all unique numbers associated with all the processes currently

accessing the file must be less than n. Write a monitor to coordinate access to the file.

7.5 (no submission—check solutions from the course website) Consider a computer

system that runs 5,000 jobs per month and has no deadlock-prevention or deadlock-

avoidance scheme. Deadlocks occur about twice per month, and the operator must

terminate and rerun about 10 jobs per deadlock. Each job is worth about $2 (in CPU

time), and the jobs terminated tend to be about half-done when they are aborted.

 A systems programmer has estimated that a deadlock-avoidance algorithm (like

the banker’s algorithm) could be installed in the system with an increase in the

average execution time per job of about 10 percent. Since the machine currently has

30 percent idele time, all 5,000 jobs per month could still be run, although

turnaround time would increase by about 20 percent on average.

a) What are the arguments for installing the deadlock-avoidance algorithm?

b) What are the arguments against installing the deadlock-avoidance

algorithm?

7.7 (no submission—check solutions from the course website) Consider the following

resource-allocation policy. Requests for and releases of resources are allowed at any time.

If a request for resources cannot be satisfied because the resources are not available, then

we check any processes that are blocked waiting for resources. If a blocked process has

the desired resources, then these resources are taken away from it and are given to the

requesting process. The vector of resources for which the blocked process is waiting is

increased to include the resources that were taken away.

 For example, consider a system with three resource types and the vector Available

initialized to (4, 2, 2). If process P0 asks for (2, 2, 1), it gets them. If P1 asks for (1,

0, 1), it gets them. Then, if P0 asks for (0, 0, 1), it is blocked (resource not

available). If P2 now asks for (2, 0, 0), it gets the available one (1, 0, 0) and one that

was allocated to P0 (since P0 is blocked). P0’s Allocation vector goes down to (1, 2,

1), and its Need vector goes up to (1, 0, 1).

CSC280/Fall 2009 Instructor: Beifang Yi

 3

a) Can deadlock occur? If you answer “yes”, give an example. If you answer

“no”, specify which necessary condition cannot occur.

b) Can indefinite blocking occur? Explain your answer.

7.8 (no submission—check solutions from the course website) Suppose that you have

coded the deadlock-avoidance safety algorithm and now have been asked to implement

the deadlock-detection algorithm. Can you do so by simply using the safety algorithm

code and redefining Maxi = Waitingi + Allocationi, where Waitingi is a vector specifying

the resources for which process I is waiting and Allocationi is as defined in Section 7.5?

Explain your answer.

7.9 (no submission—check solutions from the course website) Is it possible to have a

deadlock involving only a single process? Explain your answer.

No. This follows directly from the hold-and-wait condition.

7.11 Consider the deadlock situation that could occur in the dining-philosophers problem

when the philosophers obtain the chopsticks one at a time. Discuss how the four

necessary conditions for deadlock indeed hold in this setting. Discuss how deadlocks

could be avoided by eliminating any one of the four conditions.

7.14 In a real computer system, neither the resources available nor the demands of

processes for resources are consistent over long periods (months). Resources break or are

replaced, new processes come and go; new resources are bought and added to the system.

If deadlock is controlled by the banker’s algorithm, which of the following changes can

be made safely (without introducing the possibility of deadlock), and under what

circumstances?

a. Increase Available (new resources added)

b. Decrease Available (resource permanently removed from system)

c. Increase Max for one process (the process needs more resources than allowed,

it may want more)

d. Decrease Max for one process (the process decides it does not need that many

resources)

e. Increase the number of processes

f. Decrease the number of processes

7.15 Consider a system consisting of four resources of the same type that are shared by

three processes, each of which needs at most two resources. Show that the system is

deadlock-free.

CSC280/Fall 2009 Instructor: Beifang Yi

 4

7.20 Consider the following snapshot of a system:

 Allocation Max Available

 ABCD ABCD ABCD

P0 0 0 1 2 0 0 1 2 1 5 2 0

P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 6 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from process P1 arrives for (0,4,2,0), can the request be granted

immediately?

7.22 A single-lane bridge connects the two Vermont villages of North Tunbridge and

South Tunbridge. Farmers in the two villages use this bridge to deliver their produce to

the neighboring town. The bridge can become deadlocked if both a northbound and a

southbound farmer get on the bridge at the same time (Vermont farmers are stubborn and

are unable to back up). Using semaphores, design an algorithm that prevents deadlock.

Initially, do not be concerned about starvation (the situation in which northbound farmers

prevent southbound farmers from using the bridge, and vice versa).

========================Important Notes===========================

 Solutions must be typewritten. You can use lists, bullets for the write-up (short phrases are OK; complete

sentences not necessary).

 Put all your solutions in the same order as the above questions.

 Use this question paper as cover page and staple them together.

 Electronic submissions will be accepted only under an excusable circumstances (the above rules still

apply)—in this case, put your solutions including this question paper as cover page into ONE SINGLE Word

or PDF file and send it to me via email. I’ll grade your work based on this file and send back only your grade

(without corrections of your errors).

 The full score for this homework is 100 points. You will lose 5-10 points for missing ANY ONE of the

followings in your submission:

o No name

o No cover page

o Your work submitted not in proper order

o Not a single Word or PDF file (if submitted via email)

==

