
CSC280/Fall 2009 Instructor: Beifang Yi

 1

Assignment 3

(Due date: Thursday, 10/15/2009, in class)

Your name: Date:

Part One: Provide brief answers to the following Chapter Exercises questions:

4.7 Provide two programming examples in which multithreading does not provide better

performance than a single-threaded solution

4.10 Which of the following components of program state are shared across threads in a

multithreaded process?

a. Register values

b. Heap memory

c. Global variables

d. Stack memory

4.12 As described in Section 4.5.2, Linux does not distinguish between processes and
threads. Instead, Linux treats both in the same way, allowing a task to be more akin to a

process or a thread depending on the set of flags passed to the clone() system call.
However, many operating systems—such as Windows XP and Solaris—treat processes

and threads differently. Typically, such systems use a notation wherein the data structure

for a process contains pointers to the separate threads belonging to the process. Contrast

these two approaches for modeling processes and threads within the kernel.

4.14 Consider a multiprocessor system and a multithreaded program written using the

many-to-many threading model. Let the number of user-level threads in the program be

greater than the number of processors in the system. Discuss the performance

implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than the number

of processors.

b. The number of kernel threads allocated to the program is equal to the number

of processors.

c. The number of kernel threads allocated to the program is greater than the
number of processors but less than the number of user-level threads.

CSC280/Fall 2009 Instructor: Beifang Yi

 2

5.9 Why is it important for the scheduler to distinguish I/O-bound programs from CPU-

bound programs?

5.11 Consider the exponential average formula used to predict the length of the next CPU

burst. What are the implications of assigning the following values to the parameters used

by the algorithm?

a. α = 0 and τ0 = 100 milliseconds

b. α = 0.99 and τ0 = 10 milliseconds

5.12 Consider the following set of processes, with the length of the CPU-burst time given

in milliseconds:

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

a. Draw (Hand drawing OK) four Gantt charts illustrating the execution of these processes

using FCFS, SJF, a nonpreemptive priority (a smaller priority number implies a higher

priority), and RR (quantum = 1) scheduling.
b. (Using a Table) what is the turnaround time of each process for each of the scheduling

algorithms in part a?

c. (Using a Table) what is the waiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the schedules in part a results in the minimal average waiting time (over all

processes)?

5.13 Which of the following scheduling algorithms could result in starvation?

a. First-come, first-served

b. Shortest job first

c. Round robin
d. Priority

5.15 Consider a system running ten I/O-bound tasks and one CPU-bound task. Assume

that the I/O-bound tasks issue an I/O operation once for every millisecond of CPU
computing and that each I/O operation takes 10 milliseconds to complete. Also assume

that the context switching overhead is 0.1 millisecond and that all processes are long-

running tasks. What is the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond

b. The time quantum is 10 milliseconds

CSC280/Fall 2009 Instructor: Beifang Yi

 3

5.18 Explain the differences in the degree to which the following scheduling algorithms

discriminate in favor of short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

5.19 Using the Windows XP scheduling algorithm, what is the numeric priority of a

thread for the following scenarios?

a. A thread in the REALTIME PRIORITY CLASS with a relative priority of

HIGHEST.

b. A thread in the NORMAL PRIORITY CLASS with a relative priority of

NORMAL.

c. A thread in the HIGH PRIORITY CLASS with a relative priority of ABOVE

NORMAL.

5.20 Consider the scheduling algorithm in the Solaris operating system for time-sharing

threads:

a. What is the time quantum (in milliseconds) for a thread with priority 10? With

priority 55?

b. Assume a thread with priority 35 has used its entire time quantum without

blocking. What new priority will the scheduler assign this thread?

c. Assume a thread with priority 35 blocks for I/O before its time quantum has

expired. What new priority will the scheduler assign this thread?

5.21 The traditional UNIX scheduler enforces an inverse relationship between priority
numbers and priorities: The higher the number, the lower the priority. The scheduler

recalculates process priorities once per second using the following function:

Priority = (Recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how often a process

has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P1 is 40, process P2 is 18, and process P3 is

10. What will be the new priorities for these three processes when priorities are

recalculated? Based on this information, does the traditional UNIX scheduler raise or

lower the relative priority of a CPU-bound process?

CSC280/Fall 2009 Instructor: Beifang Yi

 4

599a. The program shown in the following uses the Pthreads API. What would be output

from the program at LINE C and LINE P?

CSC280/Fall 2009 Instructor: Beifang Yi

 5

599b. The program shown in the following uses the Pthreads API. What would be output

from the program at LINE C and LINE P?

CSC280/Fall 2009 Instructor: Beifang Yi

 6

599c. The program shown in the following uses the Pthreads API. What would be output

from the program at LINE C and LINE P?

CSC280/Fall 2009 Instructor: Beifang Yi

 7

599d. The program shown in the following uses the Pthreads API. What would be output

from the program at LINE C and LINE P?

CSC280/Fall 2009 Instructor: Beifang Yi

 8

599e. The program shown in the following uses the Pthreads API. What would be output

from the program at LINE C and LINE P?

CSC280/Fall 2009 Instructor: Beifang Yi

 9

599f. The program shown in the following uses the Pthreads API. What would be output

from the program at LINE C and LINE P?

CSC280/Fall 2009 Instructor: Beifang Yi

 10

599h. The program shown in the following uses the Pthreads API. What would be output

from the program at LINE C and LINE P?

CSC280/Fall 2009 Instructor: Beifang Yi

 11

599i. The program shown in the following uses the Pthreads API. What would be output

from the program at LINE C and LINE P?

CSC280/Fall 2009 Instructor: Beifang Yi

 12

Part Two: Important questions related to Chapters 4 & 5 (No submission):

o 4.1, 4.2, 4.3, 4.4

o 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7

o (check the course website for these questions and solutions)

========================Important Notes===========================

 Solutions must be typewritten. You can use lists, bullets for the write-up (short

phrases are OK; complete sentences not necessary).

 Put all your solutions in the same order as the above questions.

 Use this question paper as cover page and staple them together.

 Electronic submissions will be accepted only under an excusable circumstances

(the above rules still apply)—in this case, put your solutions including this

question paper as cover page into ONE SINGLE Word or PDF file and send it to

me via email. I’ll grade your work based on this file and send back only your

grade (without corrections of your errors).

 The full score for this homework is 100 points. You will lose 5-10 points for

missing ANY ONE of the followings in your submission:

o No name

o No cover page

o Your work submitted not in proper order

o Not a single Word or PDF file (if submitted via email)
==

