
CSC280-01/Fall 2008 Project 4 Instructor: Beifang Yi

 1

Project 4—Client-Server Communication (via Socket) and Naming Service

(Due date: 12/11/2008/Thursday)

Your name: Date:

In Chapter 3 (Process), we described communication in client-server systems by using socket

with two Java code segments: DateServer.java and DateClient.java. In this project, we will first

test these two Java code samples and then, based on them, write a program that deals naming

service in the Internet.

1. (30 points) Test socket communication with Java in Client-Server system. Download two Java

programs (named DateServer.java and DateClient.java) (also see the following). Learn how to

use Socket and ServerSocket classes (check the textbook/8
th
 Edition pages 128-131 and/or Java

document) and other input/output steam classes.

 You may need to test these two programs on the same machine at beginning (testing on

two separate machines is not required):

o Compile the Java code

o First run the server: java DateSever in one terminal

o Then open another terminal and execute the client: java DateClient and you will

get a line of text as output: the current date/time.

 DateServer.java code:

import java.net.*;

import java.io.*;

public class DateServer

{

 public static void main(String[] args) {

 try {

 ServerSocket sock = new ServerSocket(6013);

 // now listen for connections

 while (true) {

 Socket client = sock.accept();

 // we have a connection

 PrintWriter pout = new PrintWriter(client.getOutputStream(), true);

 // write the Date to the socket

 pout.println(new java.util.Date().toString());

 // close the socket and resume listening for more connections

 client.close();

 }

 }

 catch (IOException ioe) {

 System.err.println(ioe);

 }

 }

}

CSC280-01/Fall 2008 Project 4 Instructor: Beifang Yi

 2

 DateClient.java code:

import java.net.*;

import java.io.*;

public class DateClient

{

 public static void main(String[] args) {

 try {

 // this could be changed to an IP name or address other than the localhost

 Socket sock = new Socket("127.0.0.1", 6013);

 InputStream in = sock.getInputStream();

 BufferedReader bin = new BufferedReader(new InputStreamReader(in));

 String line;

 while((line = bin.readLine()) != null)

 System.out.println(line);

 sock.close();

 }

 catch (IOException ioe) {

 System.err.println(ioe);

 }

 }

}

2. (70 points) Naming Service. A name service (such as DNS-domain name system) can be used

to resolve IP names to IP addresses. For example, when you accesses the host www.google.com,

a naming service is used to determine the IP address that is mapped to the IP name

www.google.com. This assignment consists of writing a naming service in Java using sockets.

 The java.net API provides the following mechanism for resolving IP names:

o InetAddress hostAddress = InetAddress.getByName(“www.google.com”);

o String IPaddress = hostAddress.getHostAddress();

o getByName() throw an UnknownHostException if it is unable to resolve the host

name.

 The Server:

o Name the server program as “server.java”

o The Server will listen to port 6052 waiting for client connections.

o When a client connection is made, the server will service the connection and then

resume listening.

o Once the client makes a connection to the server, the client will write the IP name

it wishes to resolve (such as “www.google.com”) to the socket.

o The server will read this IP name from the socket and either resolve its IP

address or, if it cannot locate the host address, catch an UnknownHostException.

o The server will write the IP address back to the client or, in the case of an

UnknownHostException, will write the message “Unable to resolve hose <host

name>.”

o Once the server has written to the client, it will close its socket connect.

 The Client:

o Name the server program as “client.java”

o The client will be passed the server location (“127.0.0.1” for local host) and the

IP name that is to be resolved as a parameter.

http://www.google.com/
http://www.google.com/

CSC280-01/Fall 2008 Project 4 Instructor: Beifang Yi

 3

o The client will open a socket connection to the server and then write the IP name

that is to be resolved.

o It will then read the response sent back by the server.

o And example:

 The client is invoked as follows:

 java client 127.0.0.1 www.google.com

 the server will respond with the corresponding IP address and the client

will print it out:

 64.233.161.147

 (You need to first run the server in one terminal and then invoke the

client in another terminal).

3. (Only for bonus: 20 points) Test the above Naming Service on two machines: one as the

server and another one as the client.

 You need to get the Server IP address (with “ipconfig”) and use it in the Client.

 You need to disable Firewall and possible other network security protections on both

machines.

Important:

 In addition to above compressed source java files, a readme file (PDF or Doc or DOCX

format) is required for your submission. Check the following on how to submit your

project.

o Result screenshots (4 or 6-if for the bonus) are required in your Readme file.

===================How To Submit—Read Carefully, Pease!!============

1. Create a directory “project4_YourLastName” (you must use this format for the

directory name for this project; Use Your Last Name. For example, if your last name is

Smith, you should create directory with the name of “project3_Smith”

2. Create “project41src” … “project43src” subdirectories under

“project4_YourLastName” directory.

3. Under these subdirectories, you can put ONLY java files (source) files. This should be

clean and comprehensive—that is, I will javac *.java and I can test your code.

4. If you have used some IDE, you can compress the package files in other subdirectories

than the above six ones and tell me how to run in the readme file.

5. A “readme” file is required for the project write-up that tells how to compile in which

IDE (not required if not having used any IDE but a simple command line), result

screenshots (one for each), … keep this readme simple!

a. This “readme” must reside in the “project4_YourLastName” dir in the format

of .txt, .pdf, or .doc/docx.

6. Compress the “project4_YourLastName” dir and its contents into a zipped/rar-ed file

with same name.

7. Submit the compressed file to the instructor by email.

8. Double check your work before submission. Significant penalty (10—100 points)will be

applied if your submission does not follow the above instruction!

